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Abstract: Mosquito density plays an important role in the spread of mosquito-borne diseases such as1

dengue and Zika. While it remains very challenging to estimate the density of mosquitoes, modelers2

have tried different methods to represent it in mathematical models. The goal of this paper is to3

investigate the various ways mosquito density has been quantified as well as to propose a dynamical4

system model that includes details of mosquito life stages leading to the adult population. We first5

discuss the mosquito traits involved in determining mosquito density, focusing on those that are6

temperature dependent. We evaluate different forms of models for mosquito densities based on7

these traits and explore their dynamics as temperature varies. Finally, we compare the predictions8

of the models to observations of Aedes aegypti abundances over time in Vitòria, Brazil. Our results9

indicate that the four models exhibit qualitatively and quantitatively different behaviors when forced10

by temperature, but that all seem reasonably consistent with observed abundance data.11
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1. Introduction13

Mosquitoes transmit multiple pathogens, such as malaria, dengue, and zika, that are responsible14

for significant death and morbitiy in humans, making these animals among the most lethal to humans15

[1,2]. In particular, dengue is a life-threatening disease caused by dengue virus spread by Aedes16

species mosquitoes, including the yellow fever mosquito, Aedes aegypti [3,4]. Currently, there is not an17

effective vaccine or cure for dengue. Instead dengue prevention relies solely on vector control and18

avoidance [5]. Thus, methods to improve our current prevention and control strategies are sought in19

order to reduce the severity of ongoing outbreaks and prevent them from occurring.20

Mathematical models are important tools for understanding how both intrinsic factors (such as21

host susceptibility) and extrinsic factors (such as environmental conditions or interventions) impact22

the dynamics of infectious diseases, and of vector-borne diseases (VBDs) in particular [6]. Models23

for VBDs run the gamut from simple to complex, depending on the goals of the model [7]. Often the24

primary modeling goal is to understand the how the dynamics of mosquito-borne diseases respond25

to extrinsic factors such as climate/temperature or to explore the impacts of potential prevention26

and control strategies [8–11]. For example, Brand et al. [12] explored how more accurately predicting27

dengue transmission probability is valuable when deciding the appropriate control measures for a28

given outbreak. Similarly, predicting mosquito density and location is important when implementing29

an insecticide spraying strategy to prevent an outbreak [13,14]. These types of predictions require a30

deep understanding of the31ecology of mosquitoes [15].31

Although multiple mosquitoes could potentially transmit dengue, the primary vector globally is32

Aedes aegypti, with Aedes albopictus, mostly a secondary vector (although it transmits widely in some33
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Asian countries such as India) [16,17]. Mosquitoes go through three juvenile life stages (egg, larvae,34

and pupae) before they emerge as adults. The time spent within each juvenile life stage varies between35

species because of life history and genetic differences. There is also within-species variation as each36

of the life stages is sensitive to environmental conditions [4]. Because of this sensitivity to climate37

factors at each of their life stages the dynamics of the mosquitoes, and thus of dengue transmission, is38

closely coupled to environmental variation. Thus it is important to understand and include the role39

of environmental factors on mosquitoes when building models of dengue (or other mosquito-borne40

pathogen) transmission [17]. In particular, temperature is an important determinant of multiple41

mosquito life history traits, and so it has a knock-on impact on mosquito density and on transmission.42

In many models of mosquito-borne disease transmission, the dynamics of the mosquito population43

have been ignored (i.e., assumed to be constant) or treated very simply [7]. For example, a sine formula44

has been used to estimate mosquito density while taking into account possible seasonal fluctuations as45

a response to temperature changes [18,19]. In a review of literature conducted by Legros et al. [20], they46

highlighted the importance of further investigating density-dependence for A. aegypti and the need for47

further empirical studies to reduce our uncertainty when estimating mosquito density. Some progress48

has been made on this front. Although models for VBD transmission that include the dynamics of the49

density of vectors typically ignore the underlying characteristics of each stage as well as the role of50

climate factors, in some models approximations that depends adult traits or a subset of larval traits51

has been used [9,11,21–24].52

In this paper we are interested exploring the extent to which including more details of mosquito53

life histories in a dynamical model impacts our predictions of female mosquito density, which should54

have knock-on effects for predictions of transmission and for the effects of intervention strategies aimed55

at controlling mosquitoes. To this end build a dynamical model of mosquito population dynamics that56

explicitly includes temperature dependent traits for all life stages of the mosquitoes. We investigate57

the effect of temperature on mosquito life stages (based on published data) and incorporate these into58

our dynamical model. We then compare this model with three other models estimating mosquito59

abundance that rely on less (or no) trait data and explore their responses to temperature. We finally60

compare the predictions of all four models to data on weekly estimates of A. aegypti populations in61

Vitòria, Brazil. We discuss the advantages and disadvantages of the various modeling approaches in62

terms of both making predictions at a particular location and generalizing to other locations.63

Figure 1. A graphical representation of the mosquito life cycle including eggs, larvae, pupae, and adults.
Note that only female adults provide new eggs to the population, and the adult compartment represents
just the female subclass. Arrows represent the movement between stages due to development as well
as the removal from the stage due to mortality.
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2. Methods64

2.1. Dynamical model of mosquito density including traits65

We use a system of ordinary differential equations to describe mosquito vector dynamics at each66

of the four life stages, namely: eggs (Eg); larvae (L); pupae (P); and adults (A) (Figure 1). As only adult67

females lay eggs and take blood meals, most transmission models focus solely on the density of femals68

mosquitoes. To be consistent in our comparisons late on, we retain this convention, and only model69

adult females, but we include both sexes in earlier stages.70

Each day every living adult female (Vd(t)) is assumed to produce a fixed number of eggs, F.
A proportion of eggs (Eg(t)) die at a temperature-dependent rate µE, while a proportion develop
into larvae (L(t)) at a temperature-dependent rate 1/ρE (Equation 1). We assume that larval
death depends on two factors: over-crowding at a rate k j; and temperature at a rate, µL. The
surviving larval population moves to the pupal stage (P(t)) at a temperature-dependent rate 1/ρL
(Equation 2). Pupae either die at a temperature-dependent rate, µP, or develop to the adult stage
at a temperature-dependent rate, 1/ρP (Equation 3). We further assume that 50% of the pupal
population emerges as female adults. Female adults then experience mortality from a combination of
temperature-dependent, µ, or a temperature-independent, k, causes (Equation 4). Thus, our model
equations are given by:

dEg

dt
= F A − (µE + 1/ρE)Eg (1)

dL
dt

= Eg/ρE − µLL(1 + k jL))− L/ρL (2)

dP
dt

= L/ρL − (µP + 1/ρP)P (3)

dVd
dt

= 0.5 × P/ρP − (µ + k)A. (4)

The total female mosquito density is Vd(t), our focus for subsequent analyses, may be obtained via71

numerical integration of this system of equations. Note that the dynamics of Vd(t) implicitly depends72

on the details of the other life history stages that preceed it.73

2.2. Alternative models for mosquito density74

Our model is but one of many possible models that may be used to mathematically describe the75

dynamics of mosquito abundances. We are interested in comparing this proposed model with three76

other temperature-dependent mosquito density forms that rely on different amounts of biological77

detail and information. In Figure 2 we shows spectrum of the four densities we will compare. Our78

dynamical model is the most dependent on life history traits of the mosquitoes.79

The model we consider second is an approximation that assumes a stationary and constant
mosquito population but still depends on the life stages traits [21]. We denote Vl the density given by

Vl(t) =
F pE pL pP

(ρE + ρL + ρP)µ2 (5)

where pE pL pP and ρE + ρL + ρP are mortality rates and development times for eggs, larvae, and80

pupae, respectively. F and µ are defined as in the dynamical model above.81

The third form we compare is an approximation of mosquito density that has been used in other
vector-borne diseases (VBDs) models [11,22,25–27], where density is dependent on adult thermal traits:

Va(t) =
F pEA
ρA µ2 (6)
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where pEA is the probability from eggs to adults, and ρA is adult mosquito development time.82

Our final model is the most simple, in that it simply represents a seasonal pattern of the vector
population, without explicitly including either temperature or traits. This form was used by Bacaër
[18], Bacaër and Guernaoui [19] and represents the seasonally varying vector population as a simple
sine function:

Vs(t) = V0(1 + 0.5 sin(2πt/365)) (7)

where V0 = mean(V(t)). We note that this density form is the same as the sine form used for83

temperature, which means that this form has the same temperature fluctuations and does not depend84

on temperature directly.85

Figure 2. Traits’ dependence spectrum showing the evaluated density forms ranging from low to high traits’ dependence. First,
the sine form Vs , second the adult traits density Va , third the life stages traits density Vl , and the dynamical density Vd is last.

2.3. Parameterization and numerical analysis86

We assume that all the vector traits included in the model depend on temperature except the87

temperature-independent mortalities: k for adult mosquitoes and k j for larvae. The temperature88

dependence in traits is represented by unimodal thermal curves previously fit to trait data using a89

Bayesian method explained in detail in [26]. We use humped shaped curves, a Brière or a quadratic, to90

represent our temperature-dependent mosquito traits. The Brière curve is determined by the equation91

αT(T − TMin)
√

TMax − T, the concave-down quadratic by the equation qd(T − T0)(Tm − T0), and the92

concave-up by the equation inter − slope T + qd T2. These forms are symmetric (quadratic) and93

asymmetric (Brière) unimodal curves used by Mordecai et al. [26] to fit thermal curves to A. aegypti94

and A. albopictus adult mosquito traits using a Bayesian fitting method. Table 1 summarizes all the95

parameters used, their values and references. These fitted curves describe each trait’s response to96

temperature from 0◦C to 50◦C. For the thermal curves function values see Table 1 and for the plots of97

all curves see Appendix A.98

We assume that across a year, all temperature dependted parameters and variables are driven by
to the following temperature sine function capturing seasonality over a year

T(t) = T0(1 + B sin(2πt/365)). (8)

Here T0 is the starting temperature and B is the amplitude of the sine wave. For models Vl(t) and Va(t)99

the density over times can be calculated simply by plugging in the temperature at each time based on100

this function. That is, we define the temperature function, T(t), with t being days of the year. Then we101

evaluate each parameter at each temperature using formulas from Table 1. Vs(t) is evaluated directly.102
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Table 1. Mosquito traits used across the three trait dependent models explored. For each trait we
include the parameter, trait description, unimodal function assumed (for thermal traits), and the value
of the trait or values of parameters of the curve. We provide the references and the curves associated
with the temperature dependent traits in Appendix A.

Parameter Description Function Value Units

l f Adult mosquito lifespan (µ = 1/l f ) quad qd = −0.0011, Tm = 36.1065, T0 = 9.1088 day

pEA Eggs-to-adult Survival probability quad qd = −0.0006, Tm = 38.29, T0 = 13.56 -

F Eggs per female per day Brière α = 0.0086, Tm = 34.61, T0 = 14.58 day−1

ρE Eggs development time quad inter = 87.1722, slope = 1.1575, qd = 0.0136 day

ρL Larval development time quad inter = 201.2429, slope = 14.0345, qd = 0.2310 day

ρP Pupal development time quad inter = 20.5074, slope = 1.0954, qd = 0.0153 day

1/ρA Mosquito development rate Brière α = 0.0000786, Tm = 39.17, T0 = 11.36 day−1

pE Eggs survival probability Brière α = 0.00077, Tm = 30.33, T0 = 9.395 -

µE = (1 − pE)/ρE

pL Larval survival probability Brière α = 0.00046, Tm = 36.79, T0 = 2.354 -

µL = (1 − pL)/ρL

pP Pupal survival probability Brière α = 0.0349, Tm = 37.4679, T0 = 9.96278 -

µP = (1 − pP)/ρP

k Temp-independent mortality rate - 0.486 day−1

kj Density-dependent mortality rate - 0.09 day−1

To solve for the dynamics of Vd(t) requires numerical integration of Equations 1–4 as they are103

being forced by the sinusoidal temperature function with each parameter defined at each temperature104

using formulas from Table 1. We use Matlab software ode solver, ode45, to numerically solve the105

ode model. First, we evaluate the model dynamics at one constant temperature T0 until they reach106

equilibrium. We then use those steady state values as initial conditions for the temperature varying107

model.108

Throughout our analysis we tune the temperature-independent parameters to obtain reasonable109

results. For the dynamical model we adjust k and k j to make the mean of Vd close to the other densities.110

For the sine density Vs, we adjust the amplitude and starting density. However, Vl and Va depend111

solely on temperature-dependent thermal curves, thus we did not adjust any of their parameters.112

3. Results113

We start our model analysis by exploring the dynamics of our full model (i.e., Eqn 1–4) under114

time varying temperatures. We then compare the predictions of the four models of total adult female115

mosquito densities.116

3.1. Exploration of dynamical model behavior117

We specify initial densities for each life stage and solve our model numerically as described in the118

previous section. We assume that that the temperature curve has a mean temperature of 23◦C, and119

ranges between 18.67◦C and 30◦C (Figure 3 B) and it begins on day 0 at it’s mean (so that day 0 is in120

the spring). Within this range A. aegypti trait values keep the population from dying out completely.121

The juvenile population densities (eggs, larvae, and pupae, Figure 3 A) initially increase exponentially122

as temperature increases to the 26◦C - 28◦C range (through ∼ day 75). As temperature approaches its123

peak of 30◦C (∼ day 90), the growth rate is reduced across life stages before they resume their increase124

as temperature begins to lower again. As the temperature continues to drop (from ∼ day 120 onward125
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Figure 3. (A) Daily mosquito life stages densities evaluated for 730 days (two years). The lines show the numerical solution of
our dynamical model for eggs, larvae, pupae and female adults life stages, the parameter values used here are given in Table 1. (B)
The corresponding daily temperature given by a sine function (T0(1 + B sin(2πt/365) with T0 = 23 and B = 0.3) evaluated at 730
days (two years) used to evaluate our thermal traits incorporated into the dynamical model.

in the year), densities decrease rapidly and reach their minimum. We show two years of dynamics126

to illustrate that although densities seem to be zero, they do not in fact completely fade out. They127

only get very low and as soon as temperature increases again they grow as we can see during the128

second-year phase.129

3.2. Comparison of mosquito density patterns across models130

Next we compare the adult dynamics across all four models, again driven by sinusoidal131

temperature fluctuations. Recall the four densities, namely, Vd the adult female population result132

from our dynamical model, Vl the life stage trait dependent vector population, Va the adult trait133

dependent vector population, and Vs the sine wave approximation of vector population. We choose134

two temperature regimes to illustrate the variety of patterns and predictions these models can exhibit.135

The results show differences in both values and patterns of these densities.136

The first regime (Figures 4) follows a sine wave that starts at an initial temperature of T0 = 23◦C137

and ranges from a minimum of 16◦C to a maximum of 30◦C (i.e., this is the same forcing used in138

the previous section). In this case, the predictions of the four models are largely very difference139

in both pattern and value. However, Vl and Va, which agree when the temperature is below 25◦C.140

This is because of the similarities in their formula and they way they incorporate thermal traits. As141

temperature increases, Vd increases exponentially, while the rest of the curves have a more linear142

increase at first. We note that the peak of Vd is delayed due to incorporating dynamics for each stage143

explicitly in the model, whereas the rest of the curves are evaluated directly at each temperature. All144
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three densities that include trait information (Vd, Vl , Va) decrease as temperatures peak or approaches145

a minimum, which reflects the high mortality of vectors at very high and very low temperatures. Vs146

decreases as well, but not as drastically since it follows the temperature sine wave patterns. Further, Vs147

neither decreases or slows during high temperature periods, a qualitatively different density prediction148

compared to the other three models in this scenario.149

We can additionally explore the change in the the predicted densities across time by comparing150

their gradients (i.e., the first derivative of the curve, so that a positive value indicates that the density151

increases while a negative value indicates a decrease, Figure 4 C). Local extrema (minima or maxima)152

occur when the gradient reaches zero. In Figure 4 C we can see that 3 of the models reach extrema when153

temperature peaks (∼ day 90) – however at that point the sine wave is a maximum but the other two154

are at a minimum. Those two models have two maxima at more intermediate temperatures, although155

they do not reach those maxima at the same time. In contrast, although the dynamical model also156

exhibits only a single extrema, a maximum,it is later that the sine wave and after the peak temperature157

but before the other two models reach their second maxima.158

In constrast to the first case, the dynamics of all of the models are much more similar when159

temperature varies around a lower temperature – specifically when the starting temperature is 18◦C160

with a range of 12◦C – 23◦C (Figures 5). This low range leads all density forms to have global161

optimums compared to local optimums in the previous regime. This is because, in this thermal regime,162

the temperature is fluctuating along the linear part of all (or nearly all) of the thermal trait curves (see163

Appendix A for plots of all thermal traits from 0◦C to 50◦C). In particular, here, the two forms Va and164

Vl are very similar, since they combine traits together in similar ways. Vs has a sine shape with a lower165

peak compared to Va and Vl . In contrast, there is a 20-day lag between when Vd is observed to peak166

compared to the peaks in the other densities (Figure 5 C). This is because in the dynamical model the167

impact of temperature must propagate through the life stages, instead of appearing immediately. This168

is also why in the first regime we explored we did not see the extreme peaks and valleys due to going169

“over the hump” of the thermal curves.170

3.3. Comparison to observational abundance data on A. aegypti171

We further wish to explore the extent to which any of the density forms presented are consistent172

with observational data on abundances of A. aegypti. We compare model predictions to collected as173

part of a long term program of entomological surveillance (“Intelligent Dengue Monitoring System”)174

in the city of Vitòria in Brazil Lana et al. [15]. A. aegypti mosquitoes were collected weekly from175

mosquito traps placed in 80 neighborhoods of the city across four years (January 2008 to December176

2011) resulting in 208 weeks of A. aegypti mosquito abundance. Concurrent weekly temperature data177

at the city level were obtained from the International Research Institute for Climate and Society (IRI)178

platform at Columbia University Land Institute.179

We use weekly average temperatures from Vitòria as inputs for the three trait dependent models180

(i.e. to evaluate A. aegypti mosquito traits each week) in order to obtain the weekly prediction of181

each model. Because of the delayed response shown in Vd dynamics, we define a burning time of 8182

weeks to reduce the lag between Vd patterns and A. aegypti abundance. In addition, we adjust the183

temperature-independent model parameters k and k j to make Vd close to A. aegypti abundance in184

amplitude. We did not tune any of the parameters in Vl and Va since they are all temperature-dependent.185

For the sine wave density, Vs, we change the frequency from daily to weekly and fit the amplitude and186

intercept using least-squares (i.e., as a simple linear regression model). The fitted version equation187

is given by Vs = 36.31 + 0.35sin(2πt/52). In Figure 6 (A) we show the weekly temperature data for188

Vitòria city and Figure 6 (B) we show the corresponding predictions for our 4 models together with the189

observed Aedes abundance data.190

To investigate how close each model was to the observed data, we calculate the mean squared191

error (MSE) between the prediction of each model and the the data (Table 2). The smaller the MSE, the192

closer the prediction to the data on average. Not surprisingly, the closest approximation is Vs, which193
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Figure 4. (A) Daily adult females mosquito densities approximated using four forms, namely, the sine wave Vs with initial
V0 = 33 and amplitude of 0.45, the adult trait dependent form Va , the life stage trait dependent Vl , and the dynamical density
Vd the parameter values used to solve the ode model are given in Table 1. (B) Daily temperature given by a sine function (T0(1 +

B sin(2πt/365 with T0 = 23 and B = 0.3) evaluated at 365 days used to evaluate our thermal traits incorporated into the dynamical
model. (C) Densities’ first derivatives calculated to show how each curve changes its gradient as it varies with temperature. The
red line shows when the gradient is zero, positive gradient values (above the red line) mean that the density increases and negative
values of the gradient (below the red line) mean that the curve decreases.
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Figure 5. (A) Daily adult females mosquito densities approximated using four forms, namely, the sine wave Vs with initial
V0 = 19 and amplitude of 0.95, the adult trait dependent form Va , the life stage trait dependent Vl , and the dynamical density
Vd the parameter values used to solve the ode model are given in Table 1. (B) Daily temperature given by a sine function (T0(1 +

B sin(2πt/365) with T0 = 18 and B = 0.3) evaluated at 365 days used to evaluate our thermal traits incorporated into the dynamical
model. (C) Densities’ first derivatives calculated to show how each curve changes its gradient as it varies with temperature. The
red line shows when the gradient is zero, positive gradient values (above the red line) mean that the density increases and negative
values of the gradient (below the red line) mean that the curve decreases.
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Figure 6. (Top) Vitòria city’s weekly average temperature during the period of the study. (Bottom)
Vitòria city’s Aedes weekly abundance data in red stars and our density estimates evaluated at the
weekly temperature in Vitòria city, Brazil. The sine wave density Vs in cyan blue, the adult trait
dependent densityVa in dark blue, the life stage trait dependent density Vl in magenta, and the
dynamical density Vd in green. Mosquito and temperature data both from [15]

is the only model that was fitted to the abundance data directly. By this metric, the second best is Vl194

(the life stage trait dependent curve) followed by the dynamical curve Vd (that also incorporates life195

stages traits). The adult trait dependent density model Va was the poorest fitting model, indicating196

that incorporating juvenile traits may improve predictions of adult dynamics.197

4. Discussion198

Vector density is an essential component of vector-borne disease transmission as it partially199

determines interaction rates between vectors and hosts. For instance, a location with high vector200

density increases the chance for contact with the host, which increases disease risk and facilitates201

disease spread [28,29]. However, measuring mosquito abundance in the field can be challenging and202

the role climate factors play in the global distribution and dynamics of mosquitoes including A. aegypti203

remains unclear [30,31]. Instead of relying exclusively on measurements, mathematical models could204

potentially help bridge the gap between what we know about vector biology and the dynamics of205

vector populations. The dynamics of vector populations in general, including mosquito populations,206

are driven by the dynamics of all life stages and by the traits of the vectors across stages. Thus,207

better understanding mosquito traits and how they determine dynamics have knock-on impacts for208
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Model Vd Vl Va Vs

MSE 279 255 316 227

Table 2. Mean squared error (MSE) calculated between A. aegypti abundance data and the predictions from our suite of models
for the mosquito density Vd , Vl , Va , and Vs .

understanding constraints on transmission of VBDs like dengue, and for planning and implementing209

intervention strategies.210

In this study, we compared four models of differing complexity that could be used to approximate211

vector density for A. aegypti based on temperature. The model formulations we explored ranged212

along a spectrum based on the amount of detail they included on mosquito thermal traits from213

none (just a simple sine wave to represent “seasonality”) to a dynamical model including separate214

equations for each of the four mosquito life history stages.When each model was allowed to vary as it215

is forced by extrinsic seasonal temperature forcing, the models exhibited patterns that different both216

quantitatively and qualitatively. For example, in the lower temperature regime the qualitative patterns217

were fairly similar across models (primarily differing in the exact values observed, Figure 5) while in218

the higher-temperature regime both significant qualitative patterns (e.g., dual peaks in some models219

verses single peaks in others) as well as difference in quantitative predictions (e.g., heights of peaks,220

Figure 4). Unlike the rest of the density forms, the simple sine wave cannot explicitly capture the221

effects of the unimodality of thermal traits on mosquito density.222

Ideally, the models constructed should be able to serve dual purposes. That is, they should be223

useful for testing our understanding as well as for making predictions. To test the usefulness of the224

models for this second pupose, we explored the extent to which each of the models, with some tuning225

could be used to predict observational data on A. aegypti abundance data collected in Vitòria city,226

Brazil based on weekly average temperatures. We explicitly fit the simple sine wave function to the227

data. This serves as a kind of null model – this is perhaps the most efficient simple model we might228

expect to capture the gross patterns in these data. The other models were tuned to get them as close229

as possible to the observed data without changing the temperature dependent relationships encoded230

in the models (i.e., only the non-temperature dependent parameters were adjusted. Not surprisingly,231

the sine wave function, the only explicitly fit to the observed data, gives the smallest error. However,232

the other models also were able to capture many of the features of the data – for example capturing233

approximate timing of peaks and troughs in abundances.234

Each of the models with different amounts of detail are likely to be useful in different situations.235

For example, if we are primarily interested in approximating the number of mosquitoes overtime for a236

given location based on historical data, then using a simple sine wave might be sufficient. However,237

the fit of that model is not likely to be useful to predict dynamics in another setting, for example in a238

city with a very different climate. In contrast, the models that are built from experimental data are239

quite general because they include biological information about mosquito traits. With potential daily240

temperature patterns, we could make predictions about how the mosquito dynamics would look if241

A. aegypti invades a new location based on any of the trait based models. Indeed, the intermediate242

complexity model versions compared here (Va and Vl) have been successfully used to quantify how243

the basic reproductive ratio of falciparum malaria depends on temperature and the predictions were244

congruent with observed entomological inoculation rate [25]. Thus for capturing large scale patterns245

or extrapolating to new locations, any of the models that include traits could potentially be useful. We246

expect that our most detailed model that explicitly includes the dynamics of juvenile stages would247

be most useful when data on larval mosquitoes is being collected instead of adults, or when the248

effectiveness of interventions to reduce larval populations is being explored. Models that do not249

include details on juveniles cannot be used for that purpose. Thus the choice of which model to use250
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must be guided based on modeling goals and how this matches with modeling assumptions and with251

data types and availability [18,19,32,33].252

Author Contributions: F.E.M. and L.R.J. designed the study. F.E.M. performed the mathematical analyses and253

wrote the paper. Both authors contributed to revising and editing the paper and gave approval for publication.254

Funding: L.R.J. and F.E.M. were supported by the National Science Foundation Career grant (NSF DMSDEB255

#1750113)256

Acknowledgments: We would like to thank Dr. Raquel Martins Lana for helping with obtaining the Vitoria city257

temperature and mosquito abundance data258

Conflicts of Interest: The authors declare no conflict of interest.259

Appendix A260

We evaluate the thermal functions described in Table 1 at temperature varying from 0◦C to 50◦C261

to look at Aedes aegypti adult and juvenile trait responses to temperature. Then, with these thermal262

curves we look at the total mosquito densities Va and Vl variation with temperature.263

Figure A1. Adult mosquito mortality rate µ and the survival probability from eggs to adult pEA as
they vary with the temperature range of 0◦C to 50◦C [26,34].
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Figure A2. Adult mosquito fecundity F [8,35] and the adult mosquito development rate 1/ρA[26,34]
as they vary with the temperature range of 0◦C to 50◦C .
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Figure A3. Juvenile stages development time, eggs ρE, larvae ρL, and pupae ρP as they vary with the
temperature range of 0◦C to 50◦C [8,35].
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Figure A4. Juvenile stages survival probability, eggs pE, larvae pL, and pupae pP as they vary with the
temperature range of 0◦C to 50◦C [36].
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Figure A5. Adult trait dependent mosquito density Va and life stage trait dependent mosquito density
Vl as they vary with the temperature range of 0◦C to 50◦C.
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Figure A6. (Top) Daily adult females mosquito densities approximated using four forms, namely, the sine wave Vs with initial
V0 = 33 and amplitude of 0.45, the adult trait dependent form Va , the life stage trait dependent Vl , and the dynamical density
Vd the parameter values used to solve the ode model are given in Table 1. (Middle) Daily temperature given by a sine function
(T0(1 + B sin(2πt/365 with T0 = 25 and B = 0.3) evaluated at 365 days used to evaluate our thermal traits incorporated into the
dynamical model. (Bottom) Densities’ first derivatives calculated to show how each curve changes its gradient as it varies with
temperature. The red line shows when the gradient is zero, positive gradient values (above the red line) mean that the density
increases and negative values of the gradient (below the red line) mean that the curve decreases.
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Figure A7. (Top) Daily adult females mosquito densities approximated using four forms, namely, the sine wave Vs with initial
V0 = 33 and amplitude of 0.45, the adult trait dependent form Va , the life stage trait dependent Vl , and the dynamical density
Vd the parameter values used to solve the ode model are given in Table 1. (Middle) Daily temperature given by a sine function
(T0(1 + B sin(2πt/365 with T0 = 27 and B = 0.3) evaluated at 365 days used to evaluate our thermal traits incorporated into the
dynamical model. (Bottom) Densities’ first derivatives calculated to show how each curve changes its gradient as it varies with
temperature. The red line shows when the gradient is zero, positive gradient values (above the red line) mean that the density
increases and negative values of the gradient (below the red line) mean that the curve decreases.
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